Emergent Service Provisioning and Demand Estimation
through Self-Organizing Agent Communities

Mariusz Jacyno
School of Elec. & Comp. Sci.

mjOo4r@ecs.soton.ac.uk

Seth Bullock
School of Elec. & Comp. Sci.
University of Southampton, UK University of Southampton, UK
sgb@ecs.soton.ac.uk

Michael Luck
Dept. of Computer Science
Kings College London, UK
michael.luck@kcl.ac.uk

Terry R. Payne
Dept. of Computer Science
University of Liverpool, UK
T.R.Payne@liverpool.ac.uk

ABSTRACT

A major challenge within open markets is the ability to satisfy ser-
vice demand with an adequate supply of service providers, espe-
cially when such demand may be volatile due to changing require-
ments, or fluctuations in the availability of services. Ideally, this
supply and demand should be balanced; however, when consumer
demand changes over time, and providers independently choose
which services they provide, a coordination problem known as ‘herd-
ing’ can arise bringing instability to the market. This behavior can
emerge when consumers share similar preferences for the same
providers, and thus compete for the same resources. Likewise,
providers which share estimates of fluctuating demand may respond
in unison, withdrawing some services to introduce others, and thus
oscillate the available supply around some ideal equilibrium. One
approach to avoid this unstable behavior is to limit the flow of infor-
mation between agents, such that they possess an incomplete and
subjective view of the local service availability. We propose a model
of an adaptive service-offering mechanism, in which providers adapt
their choice of services offered to consumers, based on perceived
demand. By varying the volume of information shared by agents,
we demonstrate that a co-adaptive equilibrium can be achieved,
thus avoiding the herding problem. As the knowledge that agents
possess is limited, they self-organise into community structures that
support locally shared information. We demonstrate that such a
model is capable of reducing instability in service demand and thus
increase utility (based on successful service provision) by up to
59%, when compared to the use of globally available information.

Categories and Subject Descriptors
1.2.11 [Distributed Artificial Intelligence]: Multagent Systems

General Terms

Algorithms, Design, Experimentation

Keywords

Self-organising, service provisioning, adaptive service markets

Cite as: Emergent Service Provisioning and Demand Estimation through
Self-Organizing Agent Communities, Mariusz Jacyno, Seth Bullock,
Michael Luck, Terry R. Payne, Proc. of 8th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2009), Decker, Sichman, Si-
erra and Castelfranchi (eds.), May, 10-15, 2009, Budapest, Hungary, pp.
481-488

Copyright © 2009, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org), All rights reserved.

481

1. INTRODUCTION

Ensuring a good balance in the level of supply of services within
a Multi-Agent System is essential in avoiding the failure of tasks
due to service unavailability, or a drop in the quality of service
due to the over-provision of services from a small number of ser-
vice providers. Mechanisms that achieve this in large, dynamic
and open systems must be scalable, reliable and adaptive to envi-
ronmental change. It is, however, far from obvious how best to
design the individual agents such that the multi-agent system per-
forms efficiently and robustly as a whole. One specific problem
facing decentralized systems is the emergence of undesirable be-
haviors, such as those that lead to service competition [8], which
can occur when consumers attempt to access a limited subset of re-
source providers, leaving others under-utilised. In the absence of
centralized control, such behaviours may be self-reinforcing, lead-
ing to a rapid degradation of system performance.

The El Farol Bar problem [1] demonstrated that instability can
emerge within dynamic environments, when independent, rational
agents have access to global information. This can be especially
problematic when agents all employ similar decision making mech-
anisms, such as in coalition formation [11], group problem solv-
ing [14] and teamwork [9]. A common property of such models
is their reliance on distributed protocols and intelligent algorithms
that coordinate agent behaviour. However, these mechanisms, gen-
erally assume up-to-date shared information, and thus to converge
on an optimal solution, they require a substantial amount of global
system information (and corresponding interactions) to maintain
awareness of peer goals, actions, etc. As a consequence, they are
often vulnerable to increasing system scale and/or dynamism [4].

In contrast, there is an emerging interest in the use of the different
self-organising properties observed within natural systems, such as
insect colonies [10, 6, 2]. There are many different agent design
mechanisms that can affect system performance. Provious studies
have explored the role of system heterogeneity brought about by
limiting knowledge [10] or using decision procedures that diversify
agent behaviour [6]. This paper presents a model of a decentralized
multi-agent system in which information about the availability of
service providers is shared between agents, and the demand for par-
ticular services changes over time. Agents must therefore organise
the information that is available to them locally in order to adap-
tively respond to changes in demand in an efficient manner. This is
achieved by varying the amount of information available to agents,
which affects the flow of information within the system.

An evaluation of our model demonstrates that when agents pos-

AAMAS 2009 - 8™ International Conference on Autonomous Agents and Multiagent Systems « 70—15May, 2009 - Budapest, Hungary

sess only a limited awareness of their peers within their neighbor-
hood, they exhibit self-organising behaviour resulting in the emer-
gence of community structures that support locally shared infor-
mation. By limiting the quantity of information shared (by limit-
ing the knowledge an agent uses), stable local community behavior
emerges that is robust and efficient, and also adaptive (without ex-
hibiting any inefficient, oscillatory behaviour) when the agent pop-
ulation is exposed to global fluctuations in service demand.

The paper is organized as follows: Section 2 provides the motiva-
tion for our model, and describes much of the related work relevant
to the problem. In Section 3, the proposed model is presented in
detail, and the behavior of the system in a dynamic environment is
then evaluated and analysed in terms of information flow in Section
4. The strengths and limitations of this approach are then discussed
(Section 5), before concluding in Section 6.

2. MOTIVATION AND RELATED WORK

Arthur introduced the El Farol Bar problem as a game-theoretic
example of the challenge facing rational agents that wish to orga-
nize themselves efficiently on the basis of shared information [1].
In this game, each agent wants to visit the bar only if less than 60%
of the agent population also wished to visit the same bar. A ratio-
nal agent that decides to visit the bar would reasonably assume that
every other agent would reach the same decision and also choose
to visit the bar, in which case it should reverse its decision. How-
ever, it could also reason that every other agent would rationalise
the problem in the same way. This quandary rests on two sym-
metries: (i) every agent employs the same decision-making mech-
anisms, and (ii) every agent reasons on the basis of the same in-
formation. Both these symmetries are typically present in many
collaborative, decentralized agent systems [11, 14, 9].

A small number of studies have explored the use of agent organi-
zation without the assumption of access to global information [10,
6, 2]. In these systems, agents use decision algorithms that operate
on local information. The specific problem of resource allocation
(as opposed to service provision') in decentralized multi-agent sys-
tems has been discussed by Sen et al., who consider a system of
self-interested agents allocating resources on the basis of limited
knowledge about the global system state [10]. In this context, Sen
et al. investigated the effects of limiting the agents’ access to both
knowledge about the state of system resources, and the resulting
outcome on system resource utilisation. Hogg and Huberman [6]
examine the effects of local decision making on resource utilisa-
tion within a computational ecosystem represented by a population
of resource allocating agents. The authors demonstrate how im-
perfect information about resource state can lead to chaotic system
behavior and how this can be suppressed through appropriate lo-
cal decision-making mechanisms. Brueckner and Parunak present
a further strategy relying on local learning mechanisms designed to
preserve energy-minimising resource allocation strategies within a
mobile ad-hoc network [2]. In finding such localized strategies that
reconfigure the allocation of resource in a manner that minimises
power consumption, the authors draw their inspiration from self-
organising properties of natural systems.

There are still many questions that should be explored to under-
stand how local mechanisms interact to produce global behaviour,
with the ultimate aim of designing autonomous agents such that
their behavior self-organises to deliver efficient resource alloca-
tion in a dynamic environment. One approach for interpreting and

"By service provision, we refer to the selection by a consumer of
some provider agent that can provide some service for that con-
sumer [12].

482

analysing the behaviour of decentralized systems is in terms of in-
formation flow [8, 13], which can provide a window into the effi-
ciency of a system’s organisation. At one extreme, there is little to
no flow of information between agents who consequently have to
act on the basis of extremely limited information. In such cases,
consumers tend to make poor provisioning choices, resulting in
a difficulty in accessing desired services. Service providers may
also have little idea about which types of service are in demand,
and hence have little evidence to support strategies for accepting
or committing to service requests. At the other extreme, where
information can flow freely, or may be globally available, system
behavior may become extremely dynamic and unstable (as in the
case of Athur’s El Farol Bar problem [1]), thus risking the possi-
bility of cached information becoming stale. This can result in a
continual change in strategies used by providers to offer services,
or the unexpected withdrawal of some service types to facilitate the
availability of others in resource-bound environments. In response,
provisioning services by consumers can become increasingly chal-
lenging, resulting in delays (or even failures) in completing tasks.
Between these two extremes, there may exist a regime where in-
formation flow amongst agents brings about stable ‘communities’
within which consumers exhibit consistent resource demand and
providers are able to match this demand reliably. When changes
in demand occur, a system must be able to reconfigure gracefully,
either by agents ‘migrating’ between communities, or by providers
switching which services they offer in order to balance supply.

3. LOCALIZED SERVICE DEMAND MAN-
AGEMENT

In this section, we propose a framework for localized service
demand management, which assumes a multi-agent system com-
prising of provider agents (providers), who offer services of a spe-
cific type, and consumer agents (consumers) which request and uti-
lize the available services to achieve some task. We assume that
both service providers and service consumers are agents running
on constrained hardware components. Depending on the charac-
teristics of the system, interaction between agents may be lim-
ited by power consumption (e.g., sensors), bandwidth consump-
tion, or time-delayed response, all of which may have associated
costs if service execution must take place “on-demand”, quickly or
by some deadline. This is represented in the form of service ca-
pacity, such that each agent may only satisfy a service request for
a limited number of consumers simultaneously. To facilitate the
supply of a variety of different services types, we assume an agent
is capable of reconfiguring the service type it provides at run-time.
This can involve a significant cost in the form of down time dur-
ing which the new service type is loaded. We also consider that
providers increase their utility by successfully providing services,
and that consumers increase their utility by successfully consum-
ing services. Thus, to maximise utility, provider agents try to avoid
offering services for which there is little demand, and consumer
agents reduce wasted time where their requests are not satisfied, by
locating providers that can satisfy their requests.

To explore how stable communities emerge, this framework lim-
its the information flow, and the amount of knowledge maintained
by different agents. By removing these limits, global models of ser-
vice demand can be achieved such that all the agents have complete
awareness of the current service demand (i.e. similar to the condi-
tions of the El Farol Bar problem described earlier). This is also
equivalent to assuming the presence of a single Matchmaker [15]
which maintains a registry of all available service providers within
a multi-agent system. However, by reducing the information flow,

Mariusz Jacyna, Seth Bullock, Michael Luck, Terry R. Payne - Emergent Service Provisioning and Demand Estimation through Self-Organizing Agent Communities

stable community behavior should emerge whereby local service
demand is satisfied by the local providers, thus avoiding the prob-
lems associated with global knowledge in dynamic environments.

The individual agents must therefore evolve local policies that
facilitate the emergence of this community behavior. Thus, service
management and provisioning strategies should emerge from local
co-adaptations of individual agents, based on observations of pre-
vious transactions, and other information shared by the local com-
munity. Consumers exchange information with known providers
about their individual service demand and their knowledge of other
service providers. The providers then aggregate this information,
and both utilize it to determine future service offerings (see below),
and to provide community information back to those consumers
that they transact with. Whilst this naturally involves sharing some
knowledge, the agents independently modify their individual mod-
els of the local environment. Since service availability can fluctuate
as a result of several factors, including: current demand; contention
for services; and demand for other service types (thus resulting in
a reconfiguration of service offerings); it is necessary that agents
maintain an accurate model of the environment by maintaining a
continuous flow of pertinent information with their peers.

As the number and requirements of consumers cannot be known
a priori, and as this demand and preference will vary over time, the
design goals are three fold:

1. which providers should be configured to offer what service
types, in order to satisfy current demand;

such that the system minimises competition; and

. how should the system be organised such that it is robust to
changes in supply and demand for particular service types.

3.1 Model for Service Consumers

Consumers are agents that request and consume services pro-
vided by one of the provider agents. An agent may be capable of
both offering services to its peers as well as consuming services of-
fered by its peers; however, for simplicity, we consider the model
for each behavior as separate. The consumer monitors the behavior
of known service providers locally, and uses this knowledge both to
provision future service requests, and to share this knowledge when
establishing community knowledge. The consumer maintains a lo-
cal registry, R containing tuples corresponding to services that it
is aware of. Each tuple is defined as follows:

rp = {(ap, type, bias)

where oy, corresponds to an agent that has provided the service
type € Capability at some point in the past, and bias € [0..1]
corresponds to a score or preference for using provider o, to pro-
vide a service of type type in the future. As consumers will not
possess complete knowledge about whether a provider is currently
available, or even if it is still configured to provide the service of
type type, it periodically updates the tuples in its local registry R..
This registry is also used when provisioning services of a given
type; the consumer ranks all the tuples maintained by the registry
relating to a desired service type in decreasing order of bias, and
then submits a request to the providers in turn (starting with that
which has associated the highest bias value), until a provider is
found which can satisfy the request. Each request takes some finite
time (7}), and the provider responds either to confirm that it will
satisfy the request or to reject it; either because it currently does
not provide that service type, or because it is unavailable (i.e. it
is satisfying another query and does not have sufficient resource to

which of the providers known to a consumer should be utilised

483

simultaneously honor an additional request without compromising
current commitments).

Typically, once a service request has been satisfied (or if no re-
quester could be found) then the agent exchanges local knowledge
with known providers (described below), before becoming inactive
for some randomly determined period. The knowledge exchange
is assumed to take some finite time, 7 (irrespective of the number
of providers involved), and corresponds to the process of sharing
information about local service demand (and availability) thus fa-
cilitating the evolution of a localized community structure. The
inactive period corresponds to those periods in other scenarios (or
frameworks) where agents may be performing other tasks, or inter-
acting with a user, and is drawn from a uniform distribution [0, w],
after which the allocation process begins again.

Consumer stress (cs) is a measure of local consumer dissatis-
faction, and reflects the difficulty an agent may experience when
trying to provision a given service type, based on its registry, R..
The agent maintains an upper limit, f™® of request attempts for
each task. The motivation is that once the agent has traversed all
relevant entries within its registry, previously unavailable providers
may subsequently become available. As the registry may be tra-
versed several times whilst attempting to provision a service, this
process is terminated after f"*“* failed requests.

During each provision attempt, the agent generates a failure quo-
tient f; for provision ¢, based on the number of failed requests, f,,
where [0 < f < f™?*], defined as follows:

2fr)

’ fmaa:
The intuition here is that the failure quotient should approach unity
as the number of failed queries reaches £ '";w , despite the fact that
it can still continue to issue requests before reaching f™*. The
stress parameter, ¢, € [0..1], is based on the average failure quo-
tient for the current and previous provision, as follows:

2
o= (ftﬂ;r ft)

The consumer periodically updates the ordered set R. to reflect
its experience in provisioning services, and to minimize the number
of future rejected queries. If the request was successfully satisfied,
then the tuple 7, corresponding to the provider o, which provided
the service type is modified, such that bias is incremented by dpiqs;
otherwise it is decremented by this amount®. To ensure that this
model of provider availability does not become stale, a decay func-
tion is used to adjust the bias parameter for all tuples in R., by
applying a decay coefficient’. After each update, the set R is then
ordered with respect to bias.

ft = max (1

3.2 Model for Service Providers

Providers model the local demand for services to determine what
services they should offer. However, within resource-bound envi-
ronments, providers may only offer a limited number of services at
one time, despite posessing the capability of offering several types
of services; due to limitations in physical resources (e.g. memory
size, processor capacity, etc), or based on security issues. Busi-
ness sectors (such as the E-Business sector) also limit the number
of software modules that servers can provide to avoid information
leak. The suspension of availability of one service type and intro-
duction of another can have an implicit cost, as this reconfiguration

2The value 8p;qs = 0.1 was found empirically.

3The decay coefficient used in this model has the value dgeccay =
0.9; this value was determined empirically.

AAMAS 2009 - 8™ International Conference on Autonomous Agents and Multiagent Systems « 70—15May, 2009 - Budapest, Hungary

typically takes some time during which the agent cannot perform
any further service execution, and thus will not obtain any utility in-
crease. We therefore assume that each provider agent «;, can only
offer one service type at any time, but has the capability of offer-
ing several other service types (subject to reconfiguration). The set
Capability = Uv%e w as Capability,, contains the union of
all service types available from all service providers in the multi-
agent system (M AS), whereas Capability,, corresponds to the
set of services that o, is capable of offering. Thus, to determine
which service type «, should offer, it maintains a model S of cur-
rent, local service demand, and determines what services to offer
from that model. To achieve this, the provider maintains a number
of registries corresponding to provider ratings for different service
types, i.e. Stype for each registry of type type, as provided by con-
sumers during information exchange. Providers receive requests
from consumers in the following form:

req; = (ac, type, capacity, c;)

whereby a. corresponds to the consumer which submitted the re-
quest, type € Capability corresponds to the type of service the
consumer requested, the size (in terms of capacity) of the task re-
quired, and the consumer’s current stress, ¢ (defined in Section
3.1). When a new request is received that can be satisfied, the
provider’s registry is also updated. Each request is augmented with
a bias rating, and stored as the typle r., which is in a form that can
also be used when exchanging information with consumers; i.e.

re = (e, type, capacity, cs, bias)

If the same consumer for the same service type as that in the request
had appeared in a previous request, then the corresponding tuple in
Stype for the provider itself is updated with the new capacity, and
the bias is modified, based on the product of the consumers stress,
cs and Opiqs, as follows:

bias = maz (1, bias + dpiasCs)

This adjustment reflects an increase in perceived demand for the
service type. If no previous request exists from the requester for
this service, then a new tuple is added to Siype, With an initial
bias = Opiascs. The union of all the sets, S, is then ordered*
with respect to bias.

The provider periodically consults the ordered set S to determine
whether or not to reconfigure its offered service. If the type of ser-
vice in the first tuple corresponds to the service that is currently
being offered, then no action is taken. Otherwise, the provider per-
forms a switch operation, whereby the provider changes the type
of service it can provide’. To ensure that the model maintained for
current service demand does not become stale, a decay function is
used to adjust the bias parameter for all tuples in the sets Syype for
each type, using the decay coefficient dgecay-

3.3 Facilitating Information Exchange

To facilitate the migration of knowledge about the availability of
services, and the current service demand, both providers and con-
sumers share knowledge, before revising their respective models.

3.3.1 Sharing knowledge with Providers

Each consumer shares all of the tuples contained in its local reg-
istry, R. and its current stress level, c., with each of the providers

*The order of equally biassed tuples is arbitrary, and thus may vary
whenever the set is inspected.

SWhilst this switching process has no explicit economic cost, it has
an implicit cost as the process takes a finite time (15 = 2s), during
which no other service can be provided.

484

that are listed in the registry. Each provider then uses an integration
policy to incorporate this knowledge into its own local registries
(Stype for each of the service types the provider knows about).
This integration policy limits the number of tuples merged from
the consumer’s knowledge for each given type (i.e. tuples from
Stype) With its own knowledge, based on c;. This stress level indi-
rectly represents the quality of knowledge the consumer possesses;
low cs values suggest that the tuples provide an accurate represen-
tation of the current availability of services, whereas high ¢, values
suggest that the knowledge is poor, thus leading to difficulties in
provisioning services. The maximum number of information tu-
ples the provider is willing to substitute (¢,, € Z) for each service
type type is defined as follows:

tn:(lfcs)*mc

where m. is the size of the set of tuples provided by the consumer
for a given service type. The provider selects the highest ranking ¢,,
tuples (according to the bias) for integration into its registry. Each
provider maintains a limit (m,;) on the number of tuples it stores,
which determines which of the consumer’s tuples are retained.

3.3.2 Tuple Integration

There are three possible ways that each of the new tuples may
be integrated into the provider’s registries, based on whether the
provider has existing information on «y, (specified by the tuple),
namely: add, substitute or update. If none of the tuples in Siype
refer to this provider, then the tuple is added or substituted, using
the following policy: if |S¢ype| < myp then the new tuple is sim-
ply added to Siyp.. Otherwise, a tuple for some other provider is
potentially removed to allow the new tuple to be stored. The way
this is done is based on the bias value; the provider inspects those
tuples for which the bias is less than that in the new tuple, and
randomly selects one of these to be substituted. If none are found,
then the new tuple is not introduced. This mechanism guarantees
that only knowledge that has an equal (or higher) bias than that
existing within a provider’s memory will be introduced.

The third integration mechanism, update, modifies an existing
tuple maintained by the provider. As this new tuple represents an
additional, subjective evaluation of provider «), the new bias is
calculated by averaging the new and previous tuple.

3.3.3 Sharing knowledge with Consumers

Each provider shares all the knowledge it possesses about other
providers (i.e. S), based on its aggregated knowledge shared by dif-
ferent consumers. As consumers will have an existing (if limited)
knowledge of some service types, the shared knowledge, S, will be
organised into two distinct subsets: S and S™*“*. The set S
contains all the tuples r, € S where the type of r, corresponds
to that known by the consumer (i.e. type appears in R., and thus
is considered active information). The remaining tuples are con-
sidered inactive information, shared (indirectly) between different
consumers through common providers.

The proportion of data retained from each of these new sets is de-
termined by the current stress of the consumer, such that the higher
the value of cs, the greater proportion of tuples from S™** will be
retained. The consumer orders each set (based on bias), and selects
min(0, | S| — 2cs) tuples from S**, and max(2cs, |S™*|) tu-
ples from S***“* for retention. The top ranking t,, tuples are then
integrated into the consumer’s local registry, R. using the same
mechanism as that described in Section 3.3.2. The only difference
is that the bias of all . € S™™*°* are simply replaced by bias = 1.

This process facilitates the discovery of new services from a
group of providers that may not offer a desired service type, but

Mariusz Jacyno, Seth Bullock, Michael Luck, Terry R. Payne - Emergent Service Provisioning and Demand Estimation through Self-Organizing Agent Communities

400

300

200

100

Variance of & over simulation time (ms)

0
0 400 800 1200 1600 2000 2400 2800 3200 3600

Simulation time (s)

Figure 1: Variance of § parameter stimulating the change in de-
mand of services, for type A (dotted line) and B (continuous line).

through consecutive interactions, may reconfigure to satisfy new
consumers. Thus, consumers are willing to retain a small number
of tuples pertaining to these providers within their local memory
only when their allocative stress is high. As this, from a global sys-
tem point of view, may indicate change in the demand occurring
within the system, this mechanism allows providers to ‘migrate’ to
a community with increased service demand. However, introduc-
tion of information into the consumer’s registry does not guarantee
that the provider will change its current service offering.

3.4 Global information

The model presented above limits both the quantity of informa-
tion shared, and the volume of information retained by each of the
agents. However, many multi-agent systems assume the use of a
single middle-agent to support service discovery, such as a single
Matchmaker or Broker [15], which could in theory support the task
of load-balancing. In addition, the El Farol Bar problem [1] was
illustrative of the characteristics encountered when global informa-
tion was available.

By removing the limits on both information flow and storage ca-
pacity, the behavior arising from using a centralized service registry
would be simulated, as every consumer would rapidly acquire com-
plete and identical models of the service landscape as every other
agent. Likewise, every provider would be aware of all requests
from all consumers, and thus would have the same information as
every other (rational) provider. This configuration provides an ideal
baseline with which to compare the use of limited information flow.

4. MODEL EVALUATION

To investigate the performance of limiting memory size and in-
formation flow, and compare it to the global-information model
described above, we have explored a scenario where providers dy-
namically adapt the type of services they offer over time in response
to the changing service demands of the consumer community. Each
provider may choose to offer either of the services from the service
set R = {A, B}, but at any given time, a given provider can only
advertise and provide a single service s € R. Providers determine
the type of service that they offer based on their experience of the
demand for each service. Thus, when the number of providers and
consumers are equal and static, service supply may converge to sat-
isfy demand; the rate of convergence is dependent on the resource
management strategies adopted by the agent community.

The consumer demand for services is varied exogenously, with
the demand for service type A oscillating in anti-phase with de-

485

mand for service type B (see Figure 1). This variation in demand
is implemented by altering the sleep period between successive ser-
vice requests. This period is defined as cs¢ = 7+, where r is aran-
dom value drawn from the range [0, w] (where for our experiments,
w = 50ms, and Tq = T; = 50ms), and 0 is derived from the sinu-
soidal function of time (illustrated in Figure 1) for each consumer
requesting a service of type A or B. Thus, by varying J for one
service type (and a corresponding &’ which is 180° out of phase,
for the other service type), a symmetrical change in demand can
be achieved for the two services. To allow the system to achieve a
steady state before dynamic demand is introduced, demand for both
types of service is held constant and equal for the first 200ms of
the simulation time®. To ensure that there is some knowledge about
providers within the agent environment, consumers are initialized
with randomized tuples.

Within each evaluation, several simulation runs were performed
with different memory sizes, m to evaluate the model with limited
information flow, and these results were contrasted with a global in-
formation model, which reflects the El Farol Bar problem. As the
model itself assumes two separate size parameters: m., which cor-
responds to the size of the set of tuples provided by the consumer
for a given service type; and m,, the number of tuples stored by a
provider for a given service type, we assume in all evaluations that
Me = Myp = M.

0.9 |
0.8 r
0.7 r
0.6
05 -~

Throughput

04 -
03 r
0.2 r
0.1

12 14 16 18 20 22 24 26 28
Memory Size

30

Figure 2: The mean system throughput (solid rectangles) for dif-
ferent memory retention sizes (i.e. varying ms). The throughput of
those consumers that update their local knowledge is represented
by the line with empty rectangles. The dotted line corresponds to
the case where ms = o0; i.e. the global information model.

4.1 Service management in a dynamic envi-
ronment

Figure 2 illustrates the mean performance of the model (in terms
of successful service allocation, or Throughput) with respect to the
memory size, ms. The horizontal dotted line corresponds to the
case where global knowledge was available (i.e. ms = 00), and as
such is a constant within this graph. The graph is normalised with
respect to the optimal system performance experienced by the sys-
tem in equilibrium during steady state (i.e., when service-demand
is satisfied by supply such than no reconfiguration of providers is
necessary).

An analysis of the model’s efficiency in successfully satisfying
service requests for different sizes of memory (Figure 2) reveals

SWhilst this scenario may not be realistic, the intent is to evalu-
ate the behavior of the system (and resulting communities) whilst
maintaining full control of the demand dynamics. More complex
scenarios (and real-world case studies) could be explored in future.

AAMAS 2009 -

8™ International Conference on Autonomous Agents and Multiagent Systems « 70—15May, 2009 - Budapest, Hungary

09t - o
08 U oy M : s
07 L] X ' /Y SN]
0.6 ‘) ‘ ‘ ‘

System throughput

0.5
04 'ﬁ A L L Lo v
I \ | R raP YT !
A A WM | : itk B]
03§ Wy Y gyt d it
0.2 o Lo Vo U
" LAY [L .
o T I AR |
1 ' o N :
0% = - - -
0 400 800 1200 1600 2000 2400 2800 3200 3600

Simulation time

Figure 3: The performance (i.e. system throughput) of four sys-
tem configurations with differing memory sizes: ms = 2 (empty
rectangles), ms = 5 (solid rectangles), ms = 20 (empty circles),
and ms = oo (solid circles).

that the system efficiently satisfies service requests only for certain
cases where 4 < mg < 12. In addition, the level of information
flow between consumers is low under such conditions, suggest-
ing that the distribution of knowledge across different consumers
regarding local providers is relatively stable. However, for mem-
ory sizes outside this range, performance falls to a level below that
achieved if global knowledge was available (m, = oco), where the
flow of information between consumers is maximised.

Three general types of behaviour can be observed, based on the
way in which the model responds to changing conditions for dif-
ferent memory sizes. These are captured in Figure 3, which illus-
trates the behaviour emerging from three representative cases (i.e.
ms € {2,5,20}). When ms = 2 (Figure 3 empty rectangles),
the performance degrades as a result of the consumers inability to
resolve service request conflicts in a timely manner. As a result,
stress increases in an increasing number of consumers, which catal-
yses the reorganisation and sharing of the consumer’s local knowl-
edge, resulting in the acquisition knowledge about new providers
which are believed to be more suitable to consumers tasks. How-
ever, given the high volume of shared information from stressed
consumers, providers become selective regarding the information
they retain. Since the number of retained types is so small, infor-
mation loss occurs, resulting in the formation of isolated groups of
agents aware of only small groups of providers, which are unable
to propagate this information to other, similar groups.

The model for ms = 5 exemplifies a scenario in which effi-
cient performance is exhibited (Figure 3 solid rectangles). In this
case, the model responds smoothly to changes in demand, due to
the fact that the consumers’ service registries are large enough to
retain some information about local consumers despite the change
in demand, but small enough that little of the new information ex-
changed is retained, and hence does not compromise future service
provision. As a consequence, there are comparatively few con-
sumers that experience stress high enough to necessitate a contin-
ual reorganisation of the local service register (as in the case when
ms = 2), and thus require new information (less than 10%). This
also limits the number of providers that observe large changes in
service demand, and thus reduces the number of providers that sub-
sequently switch services. The way in which providers switch ser-
vices in response to the changes in demand is illustrated in Figure
4, where m, = 5 (solid rectangles). During the initial 200ms, local
communities start to form corresponding to the two service types,
with roughly equal numbers of providers supporting each commu-

486

60 T

Provider proportion offering service of type B

400 800 1200 1600 2000 2400 2800 3200 3600
Simulation snapshots

Figure 4: This shows the number of providers currently offering
service of type B with respect to changing demand for B (dotted
lines) for two system configurations: solid rectangles (ms = 5)
and empty rectangles (ms = 20).

nity. However, as the demand for one service type increases, the
level of reorganisation experienced by the consumer population is
limited, and thus the number of providers that swiftch matches the
resulting demand, yielding a stable, but dynamic environment.

As the number of known providers increases (e.g. in the case
where ms = 20), the performance becomes degenerate (empty
circles in Figure 3). In this case, as consumers become stressed
due to increases in service demand, they exchange and retain larger
quantities of information regarding new providers. This compro-
mises their ability to successfully locate service providers, as there
will be greater competition for the highest ranking ones. This leads
to an increase in the stress of the consumers, which in turn exerts
unnecessary pressure on providers to switch due to a continuous
and elevated exchange of information. Thus the equilibrium desta-
bilises, as providers fail to respond to changes in the service de-
mand (as illustrated by the empty rectangles in Figure 4), and the
community structure is lost.

A fourth case, where ms = 0o, corresponds to that where global
information is available to all agents (solid circles on Figure 3). In
this case, hearding occurs, where a large number of consumers end
up competing for the most attractive providers. As these providers
can only satisfy a single request at any time, a substantial number
of requests are rejected, resulting in large numbers of new queries
being issued to other service providers. Although consumers will
eventually locate an available provider, this can take a substantial
time (and hence a substantial loss in cost or utility). This results in
an increase in stress experienced by a large number of consumers,
which increases the pressure on providers to continually switch,
thus further destabilising any community structure. The resulting
behaviour of providers (which offer services of a given type) varies
in a similar way to that observed when m, = 20 (empty rectangles
in Figure 4).

S. DISCUSSION

A critical factor in achieving the efficient performance demon-
strated by some of the parametrisations of the model is the or-
ganisation of knowledge across the consumer and provider popu-
lations. A system where consumers successfully organise their lo-
cal knowledge supports ongoing interaction between providers that
can supply the services that the corresponding consumers require.
Moreover, such an organisation also has the ability to smoothly re-
configure the supply of services in response to changes in demand.

Mariusz Jacyno, Seth Bullock, Michael Luck, Terry R. Payne

- Emergent Service Provisioning and Demand Estimation through Self-Organizing Agent Communities

Assortativity strength

0
400 800 1200 1600 2000 2400 2800 3200 3600

Simulation time

Figure 5: The assortativity strength for communities providing ser-
vice types A and B over time. The triangles represents community
strength for service community A (where ms = 5), whereas the
circles represent the corresponding community strength for com-
munity B. The rectangles and crosses denote the corresponding
populations (for A and B) when (m, = 20).

In contrast, operating on the wrong information will result in de-
graded performance due to high numbers of rejected queries and
time spent on needlessly reconfiguring providers to change their
service offerings. Populations of agents that possess only incom-
plete local knowledge must therefore rely on the appropriate flow
of information in order to keep this knowledge up to date, and co-
herent enough to be of use. This must be achieved in the absence
of any global flow-facilitating mechanisms determining what infor-
mation should flow to which agent.

To analyse the structure of the information that individual agents
utilise when either provisioning services (in the case of consumers)
or in deciding whether to reconfigure their service offerings (i.e.
for providers), an assortativity metric has been defined, which rep-
resents a measure of the community strength based on the informa-
tion shared between a population of agents Ay pe interested in (or
offering) a given service type type. For each population, a square
matrix M (A¢ype), is generated of size niype X Niype (Where niype
corresponds to the number of providers), and each element repre-
sents the number of times a pair of providers ozf, and a{) are known
by the same consumer «¥ . The higher the value, the more aware the
consumers are of both providers, and hence the likelihood of both
providers being in the same community is greater. This matrix can
then be realised as a network in which the nodes represent different
providers, and the edge represents an association between the two
providers, reflecting the fact that they are both known by the same
consumer. The strength of the community structure represented by
such a network can be calculated by considering the types of ser-
vice offered by the providers which are linked. Thus, for a provider
offering a service of type type, the assortativity metric (Hyype) is
defined as follows:

where d% is the proportion of neighbours of ozZ, that offer ser-
vice type, and niype 1s the number of providers of service type
type with at least one neighbour.

The results of this analysis are illustrated in Figure 5. Here,
the manner in which service assortativity varies over simulation
time for a system operating on ms = 5 (triangles for providers of

487

service A and circles for providers of service B) and ms = 20
(rectangles for providers of service A and crosses for providers of
service B) is shown. A system that effectively manages service
allocation (circles) is characterised by a community that is strong
enough to sustain a stable system reorganization. As the consumers
experience increased stress due to rising demand for a given ser-
vice type, they exert increasing pressure on the providers to sat-
isfy this demand, which in turn strengthens the community struc-
ture. For the small memory model (i.e. when m, = 5), the com-
munity strength approached 0.9 as the demand for a service type
reached its peak; reflecting the fact that the majority of knowledge
retained by the consumers was correctly identifying relevant pro-
viders. Correspondingly, as the service demand fell, the strength of
the community decreased accordingly. The larger memory model
(i.e. when ms = 20) illustrates the pathological case, whereby
providers switch far too frequently due to the retention of too much
knowledge, compromising the ability of consumers to effectively
locate relevant providers. In this case, the community strength be-
comes erratic, and no longer varies in phase with changes in service
demand.

These results suggest that the formation of strong and adaptive
communities is accompanied by high system performance and a ro-
bust response to the varying demand. Recall that service provision
depends on the co-adaptive stability between agents responding to
locally perceived changes. The formation of a strong community
by agents interested in a particular service type yields an exchange
of information that is constrained. If a community is strong, knowl-
edge passed to the consumers can be exploited to induce a small
subset of providers to swich service types, minimising the risk of
destabilising the availability of service to other consumers in other
local communities. This raises the question of how strong should
a community be in order to support this process optimally? A
tightly linked community (where community strength approaches
one) could prevent reorganisation when there are changes in de-
mand. However, if the community is too weak, then the avail-
ability of services will be destabilised. A second question thus
arises: under what conditions is such a system capable of forming
strong communities? As demonstrated in this paper, simply varying
the amount of information available to agents is sufficient to bring
about changes in system behaviour: from being too disconnected,
to effectively evolving self-organising communities, and eventually
to a configuration where agents regress into a chaotic flux.

Figure 6 plots the community strength as a function of memory
size. In those cases where the size is too small or too big, degener-
ate behaviour results, similar to that illustrated for the large mem-
ory model (ms = 20) in Figure 5. For those cases where ms €
{2, 3}, consumers retain insufficient knowledge to successfully fa-
cilitate a useful flow of information as the environment changes.
In contrast, when the memory size is large (i.e. 15 < ms), con-
sumers retain more information about the environment, and conse-
quently can better stimulate change in the provider population. As
levels of stress increase, there is a greater chance that larger num-
bers of consumers will compete for the most favoured providers
(i.e. herding), resulting in a feedback loop that escalates stress lev-
els, which increases the pressure on providers to change, yielding
further destabilisation. It is only within the small range of cases
(i.e. 4 < ms < 15), where the community strength increases.
Here, each agent is able to adapt to changes in the environment
effectively, without necessarily being able to identify the globally
optimal providers. The close agreement between Figures 6 and
2 demonstrates that it is the strength of the communities formed
through information flowing through the system that directly un-
derpins and accounts for system performance.

AAMAS 2009 - 8™ International Conference on Autonomous Agents and Multiagent Systems « 70—15May, 2009 - Budapest, Hungary

0.9 r
0.8 r
0.7 |
0.6 -
0.5 r
04 r
03 r
0.2 r
0.1 r

Assortativity strength

15 20 25
Memory size

10 30

Figure 6: The mean assortativity strength as a function of memory
size.

An analysis of the information flow that emerges from the evalu-
ation of our model can provide a number of insights into the dynam-
ics of self-organisation, and in particular, how self-organisation can
emerge from localised decision-making within the context of re-
source management problems involving configuration of providers
to offer services based on the locally perceived demand. Although
the results demonstrate that the size of the local registry contain-
ing provider information is one of the critical factors influencing
the flow of information between agents in the neighborhood, and
thus the cohesion and stability of the community as a whole, there
are other interdependent variables that play an important role in the
process. Such variables include: the frequency of information ex-
change, the quantity of information exchanged in a single exchange
transaction, and thus the level of influence an agent has on another
agent’s decision making. These variables have been demonstrated
to play a key role in achieving self-organisation and adaptation for
a number of other decentralised architectures that have been inves-
tigated [5, 3, 7]. In the model presented in this paper, the size of
the exchanged information was dynamically affected by consumer
stress (cs) that determined the amount of information that both con-
sumer and provider agents were willing to accept. Likewise, the
level of consumer stress was an important factor in determining the
impact of the consumer, whilst querying the provider for a given
service type. Finally, this stress level was also significant in estab-
lishing the demand for a scarce resource, and hence encouraging
providers to switch the type of service they currently provided. As
all of these factors have an impact on how agent interactions evolve,
and thus how information flows through the system, we plan to con-
duct a further investigation to analyze how these parameters affect
each other in order to formally identify the synergistic relationship
between these parameters, and to identify efficient techniques for
automatically self-regulating them in a decentralised manner based
on information available locally to each agent.

6. CONCLUSIONS

In this paper, we have investigated how adaptive service provi-
sioning can arise out of local interactions between service provid-
ing and consuming agents. Using an adaptive multi-agent system
model, a relationship between the level of information exchanged
and the size of emergent agent neighborhoods was identified, as
well as the systems ability to self-organise, to form stable, local
communities. The results obtained suggest that when information
exchanged by agents is communicated only to a small subset of
their local peers, the system has the capability to self-organise into
communities within which service providers reliably provide the

488

most requested service types, and consumers are better able to suc-
cessfully provision services due to locally propagated information
regarding known providers. This stability is maintained through a
pertinent information flow that keeps community members aware
of both recent service demand, and service availability.

7. ACKNOWLEDGEMENTS

The work was partially funded by the Engineering and Physical
Science Research Council’s AMORPH grant EP/D00232X/1.

8. REFERENCES

[11 W. B. Arthur. Inductive reasoning and bounded rationality.
American Economic Review, 84:406—411, 1994.

S. Brueckner and H. V. D. Parunak. Self-organizing MANET
management. In G. D. Marzo, A. Karageorgos, O. F. Rana,
and F. Zambonelli, editors, Engineering Self-Organising
Systems, pages 1-16. Springer, 2003.

S. A. Brueckner and H. V. D. Parunak. Information-driven
phase changes in multi-agent coordination. In Second
International Joint Conference on Autonomous Agents and
Multiagent Systems, pages 950-951. ACM Press, 2003.

E. H. Durfee. Scaling up agent coordination strategies. I[EEE
Computer, 34(7):1-8, 2001.

S. Guerin and D. Kunkle. Emergence of constraint in
self-organizing systems. Journal of Nonlinear Dynamics,
Psychology, and Life Sciences, 8, 2004.

T. Hogg and B. A. Huberman. Controlling chaos in
distributed systems. IEEE Transactions on Systems, Man and
Cybernetics, 21:1325-1332, 1991.

N. H. Packard. Adaptation toward the edge of chaos. In

A. M. J.A. Kelso and M. Shlesinger, editors, Dynamic
patterns in complex systems, pages 293-301. World
Scientific, 1988.

H. V. D. Parunak and S. A. Brueckner. Engineering
swarming systems. In F. Bergenti, M.-P. Gleizes, and

F. Zambonelli, editors, Methodologies and Software
Engineering for Agent Systems, pages 341-376. Kluwer,
2004.

D. Pynadath and M. Tambe. The communicative multiagent
team decision problem: analyzing teamwork theories and
models. Journal of Artificial Intelligence Research,
16:389-423, 2002.

S. Sen, S. Roychowdhury, and N. Arora. Effects of local
information on group behavior. In Proceedings of the Second
International Conference on Multi-Agent Systems, pages
315-321. AAAI Press, Menlo Park, CA, 1996.

O. Shehory and S. Kraus. Methods for task allocation via
agent coalition formation. Artificial Intelligence,
101:165-200, 1998.

S. Stein, N. R. Jennings, and T. R. Payne. Flexible service
provisioning with advance agreements. In Seventh
International Conference on Autonomous Agents and
Multi-Agent Systems, pages 249-256, May 2008.

S. Stepney. Critical critical systems. In S. S. Ali E. Abdallah,
Peter Ryan, editor, Formal Aspects of Security: FASec,
volume 2629 of LNCS. Springer, 2003.

P. Stone and M. Veloso. Layered learning and flexible
teamwork in robocup simulation agents. Lecture Notes In
Computer Science, 1856:495 — 508, 2000.

K. Sycara, K. Decker, and M. Williamson. Middle-agents for
the internet. In Proceedings of IJCAI-97, January 1997.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

